
A Transmission Rate Estimator & Controller
for Infectious Disease SIR Models - Constant Case

Enrique Barbieri1 Vassilios Tzouanas2

Abstract— A widely studied susceptible S(t), infectious I(t),
and removed R(t) (SIR) family of deterministic, lumped-
parameter models of directly transmitted infectious diseases
is considered to estimate the transmission rate assumed to be
piecewise constant via a linear, extended-state observer. Then,
although the transmission rate is not a control signal in the
traditional sense, the application of feedback control design
offers guidance in implementing mitigating actions that curb
the disease spread. A linearized model at each measurement
point is used for offline observer design with the transmission
rate treated as an unknown but constant disturbance. The
observer-based controller simulations in discrete time explore
heuristic policies that may be implemented by public health
and government organizations.

I. INTRODUCTION
Interest in controlling infectious diseases caused by bac-

teria, viruses, and fungi continues to rise particularly due
to the COVID-19 pandemic of the last three years. This
pandemic has tested in new ways the world’s ability to
record, store, share and display critical metadata in an effort
to facilitate communication [1]. Many mathematical models
can be found in the literature, but the most basic comprises
three states denoting the susceptible (S), infectious (I), and
removed (recovered and deceased) (R) sub-groups of the total
population N known as the SIR model [2]. Its complexity
is increased in various ways, for example, by segmenting
the population fractions for finer resolution, considering spa-
tiotemporal spreading, exploring time-dependent parameters,
and extending to stochastic modeling [3]-[11].

A great deal of effort is devoted to using real data to
fit model parameters and assist with prediction [11], [12].
Optimal control strategies for SIR models have been ex-
plored in various settings [13]-[19]. The simplicity of linear
models [20], [21] however is ideal in gaining insights into
the infection spread behavior and in guiding toward the
design of health, economic and societal actions that deter
the disease spread. We continue along the lines in [21] with
two observations summarized below. To our knowledge, the
framework described in this paper has not been reported in
the literature.

A. Family of Models
A family of SIR-type models can be written as

ż(t) = G(t)z + F (z)v(t) (1)
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where z = [z1 z2 z3 · · · zn]⊤ is the state, v(t) is the
transmission rate; F is a vector of nonlinear functions; and
matrix G is in general time-varying but could be constant or
piecewise constant.

B. Modeling for Feedback Control

Denote by a(t) = [a1 a2 · · · am]⊤ a set of mitigating
actions that may include pharmaceutical and non pharma-
ceutical interventions such as full or partial mandates on
mask wearing, social distancing by age group, business and
school closures, contact-tracing protocols, travel restrictions,
application of vaccination and therapeutics, and various eco-
nomic, legal, or political measures. The actions are followed
by tracking of new infections to estimate the change in
transmission rate v(t) and adjust the management of a(t)
accordingly.

Despite the fact that v(t) is not a control input in the
traditional sense, Figure 1 illustrates how a disease-spread
model (SIR) and real-time state measurements may be used
to design a gold-standard vo(t) mapped to a set a(t) which is
scheduled by policy makers using all available information.

Fig. 1. Idealized SIR model under Control vo(k)

Hence, assume further that there are relations

a(t) = M1[z(t− td1), v
o(t− td2)] (2)

v(t) = M2[a(t− td3), z(t− td4)] (3)

where M1,M2 are maps to be determined, giving flexibility
for the action set a(t) to be designed. It is common in the
literature to consider a quarantine time window of length
Tq during which action set a(t) is enforced based on the
epidemic state at the start of Tq . In addition, maps M1,M2

use time delays td1−td4 to take into account implementation
delays by policy makers, delays in the public’s response due
to hesitancy and other uncertainty effects.
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In this paper we focus on the normalized SIR model

Ṡ(t)/N = ż1(t) = −z1z2v

İ(t)/N = ż2(t) = −γz2 + z1z2v

Ṙ(t)/N = ż3(t) = γz2

where N is the total population, γ > 0 is the recovery rate
indicating that an infected individual takes on average 1/γ
(time units) to recover. The states {z1, z2, z3} are the corre-
sponding population fractions. The SIR model is discretized
and linearized around an operating point under an assumed
constant but unknown transmission rate v = Vd during a
specified time window. This leads to a state-space model
where Vd enters the equations as a constant input disturbance.
Hence, an extended-state Luenberger-type observer can be
designed to converge to Vd. Simple relations M1 and M2

are selected together with the observer to develop a set
of mitigating actions that steer the SIR behavior towards a
desirable operating state.

The remainder of the paper is organized into three ad-
ditional sections. Section II describes the control problem,
assumptions, and a proposed solution. Section III illustrates
the results via simulations. Section IV concludes and points
to further work.

II. CONTROL PROBLEM

A discrete-time version of the SIR model with sampling
period T > 0 is written as follows

z1(k + 1) = z1(k)− Tz1(k)z2(k)v(k) (4)
z2(k + 1) = (1− Tγ)z2(k) + Tz1(k)z2(k)v(k) (5)
z3(k + 1) = z3(k) + Tγz2(k) (6)

Idealizing the interaction between Policy Making Institu-
tions at the city, county or country level, and the SIR Model
in an environment is depicted in Figure 1. The idealization
illustrates how challenging or even impossible it is to model
all nuances of how the disease spread is impacted by the
policy making institutions. The actions’ effectiveness suffer
from implementation delays, geographical and community
travel factors, as well as society’s reaction such as hesitancy
or outright rejection of the various measures. The depiction
hints at this modeling uncertainty barrier and simply assumes
a macro- or net-effect that tends to reduce the transmission
rate. Lastly, the feedback of state measurements directly to
the Policy Making Institutions box is shown dotted because
they are not used in this paper.

The SIR dynamics are such that, in open-loop with no
control, vo(k) = 0, and under a constant transmission rate
v(k) = Vd, the infectious fraction z2(k) increases to a peak
and decreases to zero for all initial conditions [2], while the
susceptible fraction z1(k) decreases to a final value S(∞)
and the removed fraction z3(k) reaches R(∞) satisfying
z1(k) + z2(k) + z3(k) = 1, ∀k. In this idealization, Vd is
treated as an unknown disturbance produced by some internal
mechanism shown as f(·). In simulations, it is common
to assume that when an infection starts, S(0) = S0 ≈ 1,
I(0) = I0 = 1− S0 ≈ 0 and R(0) = 0. A sample response

under these conditions using the model (4)-(6) is shown in
Figure 2. Various analytical results along these lines were
developed in [20].

Under feedback control on the other hand, the purpose
of the term M2M1[v

o(k)] is to simulate policy actions
that when implemented have the effect of reducing the
effective transmission rate v(k) depending on the policy
action effectiveness. Some heuristic ideas were simulated
for an ARMA model of a feedback-linearized SIR system
in [21].

Fig. 2. SIR Nonlinear Discrete-Time in Open-Loop (T = 1; γ = 1/14).

In the remainder of this paper we focus on the controllable
state [z1 z2]

⊤ recognizing that z3(k) = 1 − z1(k) − z2(k).
Finally, the SIR model predicts the disease spreads when the
basic reproduction number Re = Vd/γ > 1.0, that is when
the transmission rate is larger than the recovery rate. We take
advantage of this fact in the design of a proposed controller.

Control Objective

A strategy was suggested recently [17] that seeks to adjust
the set of mitigating actions a(t) to reduce the peak strain on
intensive-care units. Then, long-term measures bring society
back to pre-epidemic states. The strategy tends to reject
the ON/OFF management of individual mitigating actions in
a(t). In fact, a simulation of an ON/OFF lock-down policy
produced multiple infection waves, and a data visualization
example using the Johns Hopkins CORONA Virus Resource
Center correlated ON/OFF policies with detrimental conse-
quences on cumulative infectious cases in the state of Texas
between March 19, 2020 and September 10, 2021 [21].

Instead of ON/OFF, the strategy advocates policies that
steer the system’s operating point near Re ≈ 1.0 - thus
achieving mitigation because then, an infectious individual
spreads the disease on average to only one or fewer people.
If Re < 1.0 the disease does not spread and suppression is
achieved.

This is an interesting strategy that deserves more attention.
Hence, we design a control policy that seeks to steer the
system dynamics in a direction that maintains Re ≈ 1.0
or equivalently, v → γ. To that end, consider the kth time
window Wk comprising a number of samples during which



Vd is set to a constant but unknown value. Feedback control
should produce policies that steer v → γ during each
window.

Operating Point Definition: Referring to Figure 1, let the
pair (zs, vs + Vd) be the operating point of the idealized
SIR model where, zs = [z1s z2s]

⊤ is the measured state at
the start of time window Wk, and vs is the input operating
point. Then, set z(k) = zs+x(k) and v(k) = vs+Vd+u(k),
where x(k) and u(k) are small deviations away from the
operating point.

A small signal model valid in the vicinity of the operating
point leads to

x(k + 1) = Φx(k) + Γ{u(k) + Vd} (7)
y(k) = c⊤x(k) (8)

where Φ =

 1− Tz2svs −Tz1svs

Tz2svs 1− Tγ + Tz1svs

, c⊤ = [1 0]

Γ =

 −1

1

Tz1sz2s , and the transmission rate Vd enters

the state equations as an unknown input disturbance term.
An extended-state observer is suitable to estimate Vd [22].

To that end, the augmented state xa(k) = [x⊤(k) xd(k)]
⊤

with xd(k + 1) = xd(k), a constant, yields the state and
output equations

xa(k + 1) = Φaxa(k) + Γau(k) (9)
ya(k) = c⊤a xa(k) (10)

where

Φa =

 Φ Γ

0 1

 ; Γa =

 Γ

0

 ; c⊤a = [c⊤ 0]

Such augmented-state formulation can be extended to a
disturbance Vd governed by a known model, for example,

ν(k + 1) = Φdν(k) and Vd(k) = c⊤d ν(k)

β-Control Design

Consider the idealized SIR model in Figure 1 with map
relations (2)-(3), linearized model (7)-(8), and augmented-
state system (9)-(10). Let M⊤

2 = w⊤ = [w1 w2 · · ·wm],
that is, a vector of weights reflecting the effectiveness of the
m mitigating actions a = [a1 a2 · · · am]⊤.

Then, v(k) → γ and Re → 1 by the least-squares set of
mitigating actions

a =

{
w(w⊤w)−1(x̂d − γ) x̂d > γ

0 x̂d ≤ γ
(11)

and control
vo(k) = −(u(k) + γ)

where u(k) is generated by the extended-state estimator and
state-feedback law

x̂a(k + 1) =
(
Φa − Lc⊤a

)
x̂a(k) + [Γa L]

 u(k)

y(k)


u(k) = −

[
K⊤ 1

]
x̂a(k);

y(k) = c⊤x(k) = [1 0]x(k)

with controller and observer gains K and L chosen to
stabilize (Φ− ΓK⊤) and (Φ⊤

a − Lc⊤a ), respectively.
Proof: By design, the controller/observer forces

x̂(k) → x(k) → 0 and x̂d(k) → Vd

Consequently, u(k) → −Vd at a rate controlled by the
controller and observer eigenvalues. Furthermore, the chosen
least squares set of mitigating actions (11) adjusts the map

M1 = w(w⊤w)−1

so that M⊤
2 M1 = 1 (see Figure 1), and setting vo(k) =

−(u(k) + γ) with

u(k) → −x̂d(k) → −Vd

results in

v(k) = Vd −M⊤
2 M1v

o(k) = Vd − x̂d + γ → γ

The input linearization point is set to vs = γ in simulations.
The design is done assuming standard controllability con-

ditions of the pair {Φ,Γ} and the dual system pair {Φ⊤
a , ca}

for the existence of gains K and L. Controllability of {Φ,Γ}
is guaranteed by z1sz2s ̸= 0, while with measurement
y(k) = c⊤a x(k) = [1 0 0]x(k) = x1(k), that is the
small signal susceptible population fraction, controllability of
{Φ⊤

a , ca} is guaranteed by z1svs ̸= 0 and z1sz2s ̸= 0. Under
these conditions, K can be chosen to place the controller
eigenvalues, and L may be chosen to arbitrarily place the
observer eigenvalues. However, it is interesting to observe
that controllability of the dual system is lost when the
measured output is y(k) = x2(k) the small signal infectious
population fraction, that is, with c⊤a = [0 1 0]. Moreover, a
reduced-order observer also fails the test.

Now, since vs = γ > 0 and z1s > 0 but z2s → 0 as
k → ∞, then controllability is lost only in steady-state. In the
SIR context however, the need to design mitigating actions
subsides in finite time while Re > 1, that is, Vd > γ, and
hence z2s ̸= 0. This is due to the fact that in practice we’ve
seen that quarantine window lengths should be minimized
to avoid economic, health and other impacts that can be
very detrimental to society. Figure 3 combines the idealized
SIR model of Figure 1 with the extended state-observer and
feedback controller.

III. SIMULATIONS AND DISCUSSION

Simulations are presented using the Matlab/Simulink
package using the parameters listed in Table I. Four mit-
igating actions are considered each having an assumed



Fig. 3. SIR Extended State Estimator and Feedback Controller.

TABLE I
DISCRETE-TIME HEURISTIC MODEL PARAMETERS

Re Basic Reproduction Number (0.8, 3.0)

γ Recovery Rate (1/days) 1/14

Uk Nominal transmission rate (0.0571, 0.2143)

S0 Initial Susceptible State 0.88

I0 Initial Infectious State 0.12

R0 Initial Removed State 0

a1 Social-Distancing w1 = 26% reduction in Re

a2 Mask-wearing w2 = 50% reduction in Re

a3 Lock-Down w3 = 72% reduction in Re

a4 Vaccination w4 = 95% reduction in Re

effectiveness in reducing the reproduction number Re along
the lines of the reports [23], [24].

First, Re = 3.0 (Vd = 3γ = 0.2143) followed by a step
change to Re = 1.0 (Vd = γ = 1/14) is simulated and dis-
cussed next to illustrate the controller/observer performance.

1) Initially, the whole population is considered suscepti-
ble. When patient zero seeds the disease, the spread
begins, creating a jump in the infectious population
fraction I0, and a step jump in the transmission rate
Vd. As illustrated in Figure 2, under no control, I(k)
increases, S(k) decreases, and the spread continues
adding more cases to I(k) until it reaches a peak,
and then naturally overtime the disease disappears with
I(k) → 0.

2) The state-feedback controller is designed to place the
eigenvalues of {Φ − ΓK⊤} at λ = (0.1; 0.2). Simi-
larly, using y(k) = x1(k), the extended-state observer
design places the eigenvalues of {Φa − Lc⊤a } at λ =
(0.05; 0.06; 0.07). The resulting gains are K⊤ =
[−95.54;−80.63] and L⊤ = [2.69;−148.55;−110.1].

3) In an interval of 2-days, the transmission rate is con-

stant Vd = 3γ = 0.2143 and exhibits a step change at
k = 1 to Vd = γ = 1/14.

4) Figure 4 shows the transmission rate Vd and V̂d from
the observer.

Fig. 4. Transmission Rate Vd and Estimate V̂d.

5) Figures 5 and 6 show the observer error in x1 and x2,
respectively.

Fig. 5. Observer Error x1(k)− x̂1(k).

Fig. 6. Observer Error x2(k)− x̂2(k).

6) Figure 7 shows the resulting mitigating actions for
two values of Re. As expected, as Re → 1.0, the
action set a(k) → 0. The nature of the SIR con-
trol problem requires that in any implementation, the
controller/observer system run offline in a faster time-
scale, hence, only the steady state values of control
signals and mitigating actions are relevant to the so-
lution; that is, the transients shown in the simulations
are ignored.

The next simulation example closes the loop simulating
Vd as a staircase profile resulting in Re as in Figure 8. It is
also assumed that the computed action set is implemented
with perfect efficacy weighted as listed in Table I.

1) During each window of time where Vd is a constant,
the controller/observer produces the ideal action set
profile shown in Figure 9 and resulting u(k) to per-
fectly match −Vd as in Figure 10.



Fig. 7. Mitigating Actions Profile.

Fig. 8. Basic Reproduction Number - Staircase Transmission Profile.

Fig. 9. Ideal Action Set Profile.

Fig. 10. Small Signal Control - Staircase Transmission Profile.

2) The SIR model response is plotted in Figure 11. A
figure of merit used in other works is to reduce the
steady state value z3(∞) of the removed population
fraction [25]. Comparing with the no-control case in
Figure 2, there is an almost 50% reduction in the
number of removed cases. The infectious population
fraction does not exhibit a peak or multiple waves,
and simply decreases to zero.

3) These simulations are an idealization because the
underlying assumption is the mitigating actions have
an immediate and perfect effect on the transmission
rate. One way to interpret the mitigating action set
and its effect on the transmission rate is to examine
what happens when the map M2 is not ideal. For
example, M2 = M2 + ∆ where ∆ is an implemen-
tation disturbance. Figure 12 shows the SIR model
response when ∆ = [0; 0; 0;−0.5M2(4)]

⊤, that is,
a 50% reduction in the efficacy of vaccination a4.
Comparing with the ideal case, the higher z3(∞) is
an indication of worsened performance, caused by a
higher transmission rate or equivalently higher Re.
In this case, v(k) = Vd − (M2 + ∆)⊤M1v

o(k) leads
to v(k) → γ + ∆⊤M1(γ − x̂d). Other scenarios are
being constructed considering implementation delays,
higher-order SIR models [10], and other types of
uncertainties.

Fig. 11. Ideal SIR Response - Staircase Transmission Profile.



Fig. 12. Non-Ideal SIR Response with 50% Suppressed Vaccination.

IV. CONCLUSIONS AND FURTHER WORK

An SIR model of contagious disease spread was used
to illustrate the design of a feedback control policy that
adjusts the transmission rate in an effort to maintain the
basic reproduction number close to one. A mitigating action
set profile can be better managed and the disease spread
is mitigated. An extended state observer and state-feedback
controller achieve the desired goal. Simulations illustrate the
resulting set of four mitigating actions chosen to be social
distancing, mask wearing, lock-down and vaccination, when
the transmission rate is assumed to be a constant. Insightful
comments by a reviewer point to further research: 1) three of
the interventions tend to reduce the transmission rate, while
vaccinations work to transition individuals from S to R, and
a third type of interventions namely pharmaceuticals work to
increase gamma but were not used in this paper and should be
considered separately; and 2) explore imperfect knowledge
of system parameters.
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